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A computer program has been written in Fortran IV to produce eigenfunctions of 
spin and orbital angular momentum (LS functions) by the projection operator tech- 
nique. The projection operator acts on a Slater determinant built up from symmetry- 
adapted spinorbitals. When degencrdcies exist, it is easy to provide a set of deter- 
minants whose projections span the whole degenerate space. In such cases, the LS 
functions are Schmidt orthonormalized. 

These functions provide natural partitions of degenerate LS spaces which are useful 
in the simplification and systematization of atomic calculations. Some representative 
examples are discussed. 

Atomic calculations of electronic states characterized by {y; L, :M, , S, MS1 can 
be greatly simplified by expanding an approximate solution in terms of eigen- 
functions to L2, L, , 9, and S, , with eigenvalucs L.(L + l), Mt, S(S +- I), and 
MS, respectively [l]. In addition, Lbwdin [2] has stressed the importance of using 
symmetric projection operators in constructing the LS functions, as such an 
alternative introduces simplifications in the evaluation of matrix elements of 
operators which commute with L2, L, , S2, and S, . Rotenberg has developed an 
elegant algorithm [3] to implement Lowdin’s formalism into a FAP computer code 
for the IBM 7090 [4]. Schaefer and Harris [5] have proposed a different kind of 
symmetric projection operator, although in practice they obtain and handle LS 
eigenfunctions without the help of projection operators. Recently, one of us [6] 
pointed out how to improve the convergence of the atomic configuration inter- 
action (CI) expansion with the help of Lowdin’s symmetric projection operators, 
by means of a suitable partition of the degenerate LS spaces. It is this latter develop- 
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ment which prompts the present paper. A detailed study on the partition of degener- 
ate LS spaces shall be the subject of another article [7]. 

We have written a computer program in FORTRAN IV [8] which produces 
Schmidt orthonormalized LS functions @g’ expressed as 

where O(L2, S2) is an idempotent projection operator for spin and orbital angular 
momentum [9]: 

O(L2, S2) = O&2; L, ML) x O(S2; s, MS) (3) 

(k + m)! bu--le 

O(M2;k,m)=(2k+l)!(k_m)! z. 
(- 1)” j~,&?-??L+dM~-m+“) 

v!(2k + Y + l)! -* (4) 

The symbol M stands for either L or S, and k(k + 1) is the eigenvalue of M2 to be 
projected; the function upon which O(M2; k, m) acts must already be an eigen- 
function of M, with eigenvalue m. In Eqs. (1) and (2) the function @g’ represents 
the p-th degenerate element of configuration K, and DKol denotes a normalized 
ordered Slater determinant. 

In Section II we outline the computational scheme. Some of the new results on 
atomic LS eigenfunctions are presented in Section III, and a comparison with 
previous works is made in Section IV. 

II. COMPUTATIONAL SCHEME 

The computational scheme consists of two steps: the application of O(L2, S2) to 
a single Slater determinant, and the calculation of the bp: and cgd coefficients of 
Eqs. (1) and (2). 

A. Projection of a Single Determinant 

Equation (4) is first applied with M = L and then with M = S, because, in 
general, spin projections are much shorter. In order to apply the operator 
O(M2; k, m) to a Slater determinant, it is convenient to write the powers of M, in 
the form of a multinomial expansion: 
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with 

ilVi = k - M -I- v. (6) 

N is equal to the number of electrons: and the dj’s are the coefficients of the multi- 

nomial expansion. The operator Oj+ acting on determinant DKa gives 

and 

Oji-DKl(/~~) = ui,DKj(k $ v), or zero, (7) 

M(k--WI+,‘) + DK1(ilz) = C djzii=DKj(k ~. V), 

where the quantity in parentheses denotes the eigenvalue of MM, of the given 
determinant. The coefficients dj and uj, , and the determinants D,,(k -I. v) are 
generated as a result of operations carried out within ten nested DO loops (ten is 
the maximum number of electrons in the present version of the program); when 
N < 10, the N innermost loops are utilized. Only those values for which Eq. (6) is 
satisfied are considered. In this way, the right hand member of Eq. (8) is obtained 
for v - 0. 

Equations analogous to (5) and (6) may be written for the operator M!? ‘31y), 
which is next applied on the set of determinants obtained above, for v = 0, giving 
a new set of determinants {D&z)} and coefficients. The process is repeated for all 
the running values of v, the new coefficients being added to the old ones when they 
correspond to a determinant already present in (DKn(m)}. 

Let akp’ be a normalized function defined by 

In actual calculations, some of the Zjyqr)’ s turn out to be very small numbers in 
instances where they should vanish identically (as it can be deduced from consid- 
eration of the possible internal couplings of angular momentum [7]). The zeroing 
of these small coefficients, although strictly unnecessary, minimizes the loss of 
significant figures in the final results, Eqs. (1) and (2). From our experience with 
thousands of projections with nK up to 400, the magnitudes of the nonzero Z!$s 
are seldom as small as IO--“. On the other hand, we have noticed instances where 
theoretically vanishing coefficients resulted as big as 10-(.VS’C~“G-a), where NSZGFG 
is equal to the computer’s precision. That is: as much as 3 significant figures could 
be lost in getting Eq. (9) while up to 5-cipher losses were noticed in the final 
results. On this account, we decided to make equal to zero all Cgd’s smaller than 
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10-(NS1GFG-5). We also set AWGFG > 11 in order to place a safe margin to avoid 
the unwanted zeroing of (theoretically nonvanishing) 2”s. The degenerate elements 
of doubly excited conligurations of first-row atomic states are obtained with 13 or 
more significant figures, on an IBM 360/50 using double precision arithmetic. 

B. Orthonormalization 

Because of the properties of symmetric projection operators, the Schmidt 
orthonormalization turns out to be equivalent to a Gauss elimination procedure 
[2]. The only serious problem here is to establish linear dependencies. The function 
Gp’ is linearly dependent on the previous (p - 1) functions when the function 
@PI, Eq. (2) obtained through the Schmidt process is identically zero. Since we 
are using floating point arithmetic, this test is open to criticism. It is easily seen, 
however, that a necessary and sufficient condition for linear independence is 

cg = 0 3 cX=l ,**a, p - 1, (loa) 

cg # 0, for some 01 > p, (lob) 

or, in floating point arithmetic, 

CKU (‘) = very small, a!=1 ,...,p - 1, UW 

$2 # very small, for some 01. 3 p. (lib) 

Thanks to the criterion [Eqs. (1 l)], the use of fixed-point arithmetic can be rigorously 
dispensed with, in connection with the detection of linear dependencies [lo]. 
Moreover, in many applications it is possible to find a priori a sequence of deter- 
minants which give, after projection, a complete set of linearly independent LS 
functions associated with a given configuration [7]. 

III. RESULTS 

As a first example, let us consider the LS eigenfunctions arising from the 3P 
state of configuration (s$ (pl)” (pz)” which participates in the expansion of the 
ground state wave function of the C atom. The five degenerate set may be expressed 
in terms of the five possible internal couplings compatible with a 3P state, as shown 
in Table 1. The association of the different functions with the inner couplings can 
be made a priori, by inspection of the sequence of determinants to be projected [7], 
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TABLE I 

Five Degenerate Set From The 3P of (sI)” (pJ* (p$ 

413 

Determinant9 b’“” 
KS 

II 12 16 116 JiS:3g --J3/3 v5 0 0 

12 13 15 115 J3 0 0 0 

11 13 15 116 J8 0 0 

13 14 15 113 1/‘E; 3 443 

12 15 16 112 45 

a A determinant is written in terms of its spinorbitals. A spinorbital with quantum numbers 
(6 1, ma , m,) is denoted by N(i, I, ml , mJ: 

N(i, I, ml, me) = I(f) + (i - 1) x (21 + 1) + m, + I f 1 + (4 - m,) x 100, 

where I(I) = 0, 10, 30, and 70, for I -: 0, 1, 2, and 3, respectively. The sr orbitals are omitted for 
brevity. 

b Inner coupling: 3P(pl)* 1&pp)2. 
c Inner coupling: “P(p# %(p#. 
d Inner coupling: aP(p,)2 sP(p,)2. 
8 Inner coupling: ‘D@,)? 3P(p,)z. 
r Inner coupling: rS(p,)* “P(p,)e. -- 
9 Computer output is in decimal form. Conversion to the form da/b where (1 and b are in- 

tegers was achieved by squaring the numbers in decimal form and approximating to the nearest 
ratio a/b. In this and the following table the precision is of 14 significant figures. 

or a posteriori, by examining the c~J coefficients, which we do not reproduce here 
for lack of space. There are three interesting things to say about these functions: 

(i) The second function, exhibited in the third column of Table I, is the only 
one which has a nonvanishing Hamiltonian matrix element with the ground state 
configuration (s# (Q2 (P,)~, since the other functions are expressed as linear 
combinations of projections of three-excited determinants. In a previous paper [6], 
it was pointed out that these “Hartree-Fock interacting” spaces make out for the 
largest contributions to the correlation energy and to the wave function. This sort 
of simplification is typical in atomic calculations and it provides, in conjunction 
with natural spinorbital techniques [I 11, the most rapidly convergent set for expres- 
sing the Cl series. 
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(ii) Each one of these functions belongs to different invariant subspaces 
which are useful in connection with convergence properties and related matters [6]. 

(iii) The number of b?J coefficients in the Hartree-Fock interacting function 
is as small as possible; it is impossible to project a different sequence of determi- 
nants yielding the same function with a smaller number of bpi coefficients. Hence, 
this gives the most efficient representation of N-electron functions with regard to 
the computation of the Hamiltonian matrix elements [2]. 

TABLE 11 

Relevant Couphngs from the $P of S.&Q (p$ 

sequence of 
couplings* 

Determinant9 b”S’ 
KZ 

2 13 14 44 113 114 

2 12 14 45 113 114 

2 12 13 14 114 145 

2 12 16 41 113 116 

2 13 16 41 112 116 

2 11 16 43 112 116 

2 12 16 43 111 116 

2 12 16 42 112 116 

2 11 12 16 116 143 

2 11 13 16 116 142 

2 12 15 44 112 115 

2 11 15 45 112 115 

2 11 12 15 115 145 

Jlo 
0 

0 

-JS 

-JS 

-x&/3 

v&i/3 

-Jiii 

0 

0 

&ii 

d20 

3F {“D ‘D} ‘D 

“F {3D sP} ‘D 

3F {‘D 3P} ‘D 

“D i3D ‘D} ‘D. 

3P iaD ‘D) ‘D 

=D isD “P} ‘D 

=P (“D “P) ‘D. 

“D (sD ‘S} ‘D 

I 

$D {‘D sP} ‘D 

esP {‘D “P} ‘D 1 
3P {8D ‘D} ‘S 

3Y (aD “P} ‘S 

3P {‘D “P) ‘S 

a See footnote a of Table I. 
b The p-th function 0;) corresponds to the coupling (or linear combinations of the couplings 

comprised between the brackets) under this column. 
c Sea footnote g of Table I. 
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A second example should give an idea of how well the CI series can be simplified 
by performing an appropriate partition of degenerate LS spaces, by means of the 
present method. Let us consider the 3P functions of (p# sZQ@, which define a 
29-degenerate manifold corresponding to the leading three-excited configurations 
of the ground state of the carbon atom [6]. The ( pi)2 represents a K shell excitation 
and hence it has a strong tendency to preserve its spherical symmetry, i.e., a IS 
coupling. It is found that the relevant terms correspond to the three couplings 
shown in Table II. Because of the “projection separability” [7] between the 13 
functions in which ( pJ2 is coupled to a lD or a lS, and the remaining 16 functions 
in which (pi)” is coupled to a “P, it is possible to write the three couplings of 
Table II in terms of 13 or less projected determinants. Finally the three-degenerate 
subset can be simplified into an effective two-degenerate subset, as shown in the 
discussion following Eqs. (12)-(14) of Ref. 6 [12]. Not only the original 294old 
degeneracy is reduced to two, but also the number of hjrv,’ and c!$ coefficients is 
considerably diminished. This one and related results are not trivial; they can only 
be deduced after a detailed analysis of each particular case [7]. It should also be 
pointed out that, for most configurations, not all the types of internai couplings can 
be written as successively orthonormalized projected determinants. Fortunately, 
however, those instances turn out to be of no practical importance in atomic 
calculations. 

IV. Drscussrox 

The purpose of the present computer program is to produce LS eigenfunctions 
suitable for atomic calculations, as illustrated in the previous section. 

The present version of the program is limited to handle up to 10 electrons, but 
is general otherwise, and hence it should be useful in first- and second-row atomic 
calculations. Also, the method described in Section II can be extended to a larger 
number of particles without any substantial loss of efficiency, as we have inciden- 
tally found out while extending our original 6-electron program into the present 
one. The program can be extended in a routine manner up to, say, 20 electrons, 
which is all that should be needed in practical problems. 

The main advantage of our program over Rotenberg’s is that ours is written in 
FORTRAN IV, and hence it is effectively available to a wider audience 
(Rotenberg’s algorithm is suitable for FAP but not for FORTRAN). The auto- 
matic generation of the full degenerate spaces is not carried out in our program, as 
it is of more interest to use particular sequences of projected determinants, in 
order to determine the partitions appropriate for atomic calculations (Section III). 
It is apparently very difficult to write a computer code to generate such sequences. 

For comparison with Schaefer’s program, the 27 functions corresponding to 
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the 3P of the confignration ls2~p,p,(2p)~ can be obtained in 2.8 minutes, in an 
IBM 360/50, FORTRAN IV level G, as compared with the 1.4 minutes for 
Schaefer program on an IBM 360/67 FORTRAN IV, level H. In other words, 
both programs are comparable with regard to efficiency in the generation of the 
LS functions. However, Schaefer’s program does not permit a controlled partition 
of degenerate spaces, neither does it compute the b!$ coefficients, important for 
the simplification of the matrix elements. The partial eigenfunction sets (we call 
them internal couplings) mentioned by Schaefer and Harris are particular cases of 
LS functions which can be expressed by means of Eq. (1) [7, 1 I]. Also, ours is the 
only computer code to date which can produce such partial eigenfunction sets [13]. 
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